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When electron-lifetime effects, electron-hole pair excitations, or both are included in the
description of an electron gas, the frequency associated with the surface plasmon is a com-
plex quantity, the imaginary part providing a measure of the damping of the plasmon. The
surface-plasmon dispersion relation then involves the specification of this complex frequency
as a function of the wave vector parallel to the surface. A general theory is developed for
such a surface-plasmon dispersion relation in a semi-infinite free-electron gas bounded by
a surface that scatters the electrons specularly. The properties of the electron gas enter
through the nonlocal transverse and longitudinal dielectric functions €,(q, w) and ¢, (g, w),
both of which include a finite electron lifetime here. The results obtained using local and
hydrodynamic approximations for the dielectric functions are presented briefly, and the
self-consistent-field approximation is discussed in detail. The calculations are done both

with and without retardation.

I. INTRODUCTION

Surface plasmons in metals have been detected
by electron energy-loss measurements, ! by low-
energy electron diffraction, 2 and, when the surface
of the metal is rough, by optical absorption and
photoemission.® A number of theories of surface
plasmons have been proposed which assume the
metal to be a free-electron gas confined to a semi-
infinite region bounded by a perfectly smooth sur-
face that scatters the electrons specularly, !
These theories differ in the approximations used to
describe the response of the electron gas to an elec-
tric field; the electrons have been treated (a) as a
gas of noninteracting particles, (b) by hydrodynamic
equations of motion, (c) by the Boltzmann equation,
and (d) in the self-consistent-field (SCF) approxi-
mation.

In this paper we present a theory in which the
equations determining the surface-plasmon disper-
sion relation include general transverse and longi-
tudinal dielectric functions for the electron gas.
Results found previously by other authors are ob-

tained by using the appropriate approximations for
the dielectric functions. Retardation of the Cou-
lomb forces is included, but it can be neglected
simply by letting the velocity of light become infi-
nite.

Other recent theories of surface plasmons have
used general electronic wave functions which, in
principle, can be chosen to obey correct boundary
conditions at the surface. !*!® The effects of sur-

‘face roughness!* and a variation in the density

of electrons near the surface!® have also been con-
sidered. Refinements of this type are not included
in our theory.

II. THEORY

We choose a coordinate system such that the
metal is confined to the semi-infinite region z >0
with a vacuum in the region 2<0, and let all fields
and currents have a space and time dependence of
the form

F(F,t)=F(z)etlaxr-9n

These fields will be associated with a surface plas-
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mon propagating in the x direction with a real wave
vector ¢, and a complex frequency w=w’ +iw’’,
where - 1/w'’ is the lifetime of the surface plas-
mon., The frequency w is complex since we will be
incorporating a finite electron lifetime, the effects
of single-particle excitations, or both into the
transverse and longitudinal dielectric functions.
The surface plasmon has fields which die out as one
- moves away from the surface, both into the metal
(z >0) and into the vacuum (2 <0). Since there is
an oscillating charge density near the surface of
the metal, the electric field in the metal is not so-
lenoidal (3 ‘E =4mp #0). It then follows from Max-
well’s equations that there are nonvanishing field
components E,, E,, and H,, but that E,=H,=H,=0.

The same nonvanishing field components occur
in an analysis of optical absorption at oblique inci-
dence with p-polarized light (incident wave vector
in the x-z plane and electric field polarized in the
plane of incidence). We can therefore use a pre-
viously derived result [Eq. (2.42) of Ref. 16] for
the surface impedance Z}, which is the ratio of E,
to H, just inside the metal:

o Ef0+) 1 gigf‘” daq,
Z"—Hy(0+)_21r(c) - @

7 '
X((wz/cz)eg(q, w) ¥ (@¥c)e,a, w)—qf) » (1)

where g% = g% + ¢%, while €,(g, w)and ¢,(g, w) are the non-

local longitudinal and transverse dielectric functions.
This expression for the surface impedance is valid
if the electrons are scattered specularly at the sur-
face and if the fields vanish at z -, and is applica-
ble when discussing both optical absorption and
surface plasmons.

Equation (1) has been used in Refs. 16 and 17 to
find the reflectance of a free-electron-like metal by
setting up outside the metal incident and reflected
waves with a given real frequency w, by expressing
the reflectance as a function of the field ratio
E,(0-)/H,(0- ) just outside the surface, and by
equating this ratio to Z ,', as given by Eq. (1).

To find the surface-plasmon dispersion relation
one must take fields outside the metal which de-
crease exponentially away from the surface, find
the ratio E (0~ )/H,(0~-), and equate this ratio to
Z;; this gives an equation from which the surface-
plasmon frequency w can be determined as a func-
tion of q,.

We, accordingly, require that the z-dependent
part of the electric field E, outside the metal be of
the form

E (z)=Ae%0* (2)

where A is an arbitrary constant and Re(@,) >0,
which makes
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lim E,(z)=0 .

B =®

Since E ,(z) must satisfy the wave equation
2 2
<—¢I2+d—z +%> E(e)=0
*dz* ¢ # ’
o, is given by
ag=q5- w?/c? . 3)

Maxwell’s equations can then be used to determine
E (z) and H(2):

dE, (z) _
dz

ik H,(2)=~ (W/C)E , (z)=~ (iw/c)Ae®* , (5)

The desired field ratio is therefore

ik E (2)= - agAe®” 4)

E(0-)/H(0-)==i0yc/w . (6)

Equating this ratio to the surface impedance Z,
given by Eq. (1) yields the equation

2 wZ)l/Z—g ”qu
qx ?2 =7 A _qT

2 a3
><<€:(q,w) e, w)—qzcz/w2> » (Ta)

from which the surface-plasmon dispersion relation
can be found. I retardation is neglected by letting
¢- in Eq. (7a), only the term involving the longi-
tudinal dielectric function remains, and the equa-
tion becomes

_1- s f T __da,
T J 49%€(q,0)
a result derived previously by Ritchie and
Marusak. !® In the following sections we shall see
how approximate surface-plasmon dispersion rela-

tions can be derived by choosing various expressions
for the dielectric functions in Egs. (7a) and (7b).

(Tb)

A. Local Approximation

What we shall call the local approximation is ob-
tained by using a local (i.e., ¢ independent) dielec-
tric function €(w) in Eqs. (7a) and (7b). This di-
electric function is the ¢ — 0 limit of the general
transverse and longitudinal dielectric functions:

€(w)=1im €,(g, ©)= lim (g, ©) . @®)
a-0 a-0
If we replace both €,(g, w) and €,(g, w) by €(w) in

Eq. (7a), the integration is elementary and the
equation becomes

gic?/w?=e(w)/[e(w)+1] , (9

a result quoted by Teng and Stern. !8
If we solve Eq. (9) for w, using the local dielec-
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tric constant for a free-electron gas,
€(w)=1-1/9% | : (10)

where @ =w/w, w,being the infinite-wavelength
bulk plasmon frequency, we find the dispersion re-
lation with retardation included,

w 1 1 1/2]'1/2
Q=‘Jp—= [1+2—Q—i+(1+716:2c> R (11)

where @,=w,g,/c. Equation (11) was derived by
Stern and is quoted by Ferrell.® The surface-plas-
mon frequency 2 =Q(Q,) approaches the line 2=Q,
passing through the origin when @,<1, and ap-
proaches the constant =1/V2 when @,> 1.

The dielectric function (10) applies only to free
electrons. If electron scattering is included by in-
troducing a phenomenological relaxation time 7, the
local dielectric function becomes

€(w)=1-1/QQ+iy) , (12)

where y=1/w,7. The iy term in €(w) causes a
damping of the surface plasmons: The frequency
takes on a negative imaginary part Q"', where we
write the dimensionless complex frequency as

Q=0 +iQ" = (0 +iw’")/w,

It can be shown that to first order in 7, Q~ 1/V2
-3ivfor @, > 1, and Q~ Q,-% i¥Q% for @, < 1.
The real part of the frequency Q' does not depend
on v to first order, and is therefore given quite
accurately by Eq. (11) if v is not too large
(v< 10-3.

If we go to the limit of no retardation in Eq. (9)
by letting ¢ - =, we find the well-known result

e(w)=—1 . 13)

Use of the dielectric function (12) in Eq. (13) then
yields a constant surface-plasmon frequency
Q=~1/V2- 3iv.

B. Hydrodynamic Approximation

The response of an electron gas to an applied
charge density s (T, t) can be described by the hydro-
dynamic equation of motion”

o8 48 2 o2
— - pEvE ) n(r,t
<§F+T o B 63 ’)

- s, O enE D] a8

where n(t, t) is the induced charge density, and
B%=2v2% v being the Fermi velocity., One can
take the Fourier transform of Eq. (14) and use the
definition of the longitudinal dielectric function,

(g, ») (15)

@G 0y rs@ @)
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to obtain the hydrodynamic dielectric function

2
€(g, w)=1- ama%f@? . (16)

If we use Eq. (16) for the longitudinal dielectric
function in Eq. (7a), and the local approximation
for the transverse dielectric function €, (g, w)
~€ (w),' the integration becomes elementary and
the result can be written

(@%-q%) (g% qB) %% + (a%- 4%)' ' %q8)

+4%q%-4%)=0 , (am
where
2 W(@+i/7)- W}
qL = 62

is the volume-plasmon dispersion relation, which
satisfies the equation €,(g;, w)=0, g%=w?e(w)/c?,
and ¢2= w?/c?. Equation (17) has previously been
derived by Sturm using a different method. !!

If we neglect retardation by letting ¢ -« in Eq.
(17), we find

@%-q3)" *[e(w)+1]+g,[e(w)-1]=0 . (18)

In the absence of impurity scattering (7=«~) and for
small wave vectors (¢, <w,/vp), Eq. (18) gives the
well-known linear dispersion relation

w 1 3\1/2y q.
o=l ] a9
The frequency w is real when 7=, In the hydro-

dynamic approximation the surface plasmon has a
finite lifetime (w’’ <0) only when T is finite.

C. SCF Approximation

In this approximation we use SCF (or Lindhard)
dielectric functions for a free-electron gas, modi-
tied so as to include a finite relaxation time 7.2°
The transverse dielectric function is

€4(q, w)=1~ (wj/w&)f, , (20)
where
S (243 1) - o nepip(2o +1
fi=s(@%+3u"+1) - 392 [1- (z-«'?FIn T 1
7\272 Z+u’+1‘
+[1= (@ +u")?] ln(———————z P 1)] ,
(21)
with
@=w+i/T , 2=q/2kp , u'=0/qup ,

P being the Fermi wave number and vy the
Fermi velocity. The longitudinal dielectric func-
tion is

-1

€w
€l(q) (A))— 1+ 1+i[ql' _ tan-l(qll)]/(qllw,r) 3

(22)
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where
€,=1+ (3‘“,%/42”%«*)]"1 , (23)
f,=%+—§; [[1- @ —u’)z]ln(%%
+1-(z +u')2]1n<—z%‘u7,-f—i—\)} , (24)
and
U=vpT/(1-iwT) . (25)

The surface-plasmon dispersion relation found by
using these dielectric functions in Egs. (7a) and (7b)
will be discussed in Sec. III. The SCF dielectric
functions have nonvanishing imaginary parts, even
in the absence of impurity scattering (7=«), be-
cause they include single-particle (i.e., electron-
hole pair) excitations of the electron gas. It follows
that the surface plasmon has a finite lifetime

(w"" <0) in the SCF approximation even if 7=, con-
trasted with an infinite lifetime in the local and
hydrodynamic approximations.

A problem arising when the SCF dielectric func-
tions are used is that they must be evaluated with
care when the frequency w is complex, as it is for
the surface plasmon. This problem exists because

f: and f, [defined in Eqs. (21) and (24)] have logarith-
mic branch points in the complex ¢ plane lying close
to the path of integration in Egs. (7a) and (7b). The
positions of these branch points depend in a crucial
way on the imaginary part of w, and meaningless
results will be obtained if the path of integration
passes on the wrong sides of the branch points. The
procedure used for evaluating Eqs. (7a) and (7b)
is discussed in Appendix A.

III. RESULTS AND DISCUSSION

The SCF dielectric functions have been used to
calculate the surface-plasmon dispersion relation,
both with and without retardation. The electron gas
has been characterized by the parameter A=E,/Ep,
where E,=7w, is the plasma energy and E ; is the
Fermi energy. Other characteristic free-electron
gas parameters are related to A in the following
ways: The dimensionless Fermi velocity is V=vz/c
=160a/(374%)=0,012388/A%, a being the fine-
structure constant; the radius 7 of a sphere con-
taining one electron, in units of the hydrogen Bohr
radius, is 7= 7)(&7)"/ A%=1.13054%; finally, the
dimensionless Fermi wave number is K=kpc/w,
= (37/4aV)' /2=161.44A. Two values of the damping
factor y=1/w,T were used: y¥=0and y=10"2% The
real and imaginary parts of the frequency £ =’
+1Q'' as functions of @,, are shown in Fig. 1 with
A=1, and in Fig. 2 with A=2,

The surface-plasmon dispersion relations, when
expressed dimensionlessly in units of the plasma
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frequency as we have done in the figures, are essen-
tially independent of A when the wave vector is
small (@,<5). In this region the local approxima-
tion describes the surface plasmon adequately.
First, consider the case y=10"%. In the limit @,

- 0 without retardation, Q- 1/v2- 3iy, whereas
with retardation included, Q- Q,— 3ivQ% this is
preciselythe behavior resulting inthe local approx-
imation. If the local approximation were valid for
larger @,, the frequency without retardation would
remain at the constant value Q=1/v2- 3iy, where-
as the frequency with retardation included would
approach this same value for @,>2. The two fre-
quencies, with and without retardation, do indeed
become equal when @, >2, which indicates that
retardation is unimportant for large @, in the SCF
approximation, as well as in the local approxima-
tion. The frequencies tend to approach the constant
value 1/v2- iy as @, increases; however, when
@,25, they rise significantly above this value, indi-
cating the appearance of nonlocal effects.

T T TTTTT] T T TTTTTIg T T 17177

14 RETARDATION

————— NO RETARDATION
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o.l I 10 100
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o ]
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FIG. 1. Real and imaginary parts of the dimension-

less surface-plasmon frequency =w/w,=Q'+iQ "
as functions of the dimensionless wave vector Q,=g,c/w,
in the SCF approximation with A=E, /Ep=1.
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FIG. 2. Real and imaginary parts of the dimensionless
surface-plasmon frequency 2=w/w,=Q’+iQ’’ as func-
tions of the dimensionless wave vector @,=g,c/w, in the
SCF approximation with A=E,/Ep=2. The dashed line
that appears for @,>20 shows £’ in the hydrodynamic
approximation.

In the local approximation, the imaginary part

of the frequency, Q'’, is approximately proportional to

¥, vanishing as ¥- 0. Figures 1 and 2 show that,
in the SCF approximation, Q' #0 for all @,>0 even
when y=0. This finite-plasmon damping for y=0
is a nonlocal effect which is most important for
large @,, but it does extend also into the region of
small Q,. The magnitude of '’ depends on @,, but
it is small when Q,< 1, being at least one or two
orders of magnitude smaller than it is for large Q..
Therefore, it is still true that local effects are
dominant for small Q..

The effects of nonlocality can be summarized as
follows: (a) Q' rises above the limiting local value
1/V2 as @, increases, eventually rising to about
1.4. (b) - Q" similarly rises above the limiting
local value 37, but it decreases again when @, is
sufficiently large. The Fermi wave number K
=kpc/w, establishes a scale which determines how
large @, must be in order that these effects appear.

R. FUCHS AND K. L. KLIEWER 3

Since K is directly proportional to 4, nonlocal ef-
fects occur at smaller values of @, when A=1 than
when A=2, as is evident by comparing Figs. 1 and
2. When retardation is neglected, the deviation of
Q' and Q' from the local values 1/v2 and - 3y is
directly proportional to @, when @, is small. (The
logarithmic scales in the figures obscure this linear
dependance. ) The coefficients of these linear terms
in the dispersion relation are given in Table I in
the two rows labeled SCF. %

The results shown in Table I for the Boltzmann
approximation are those of Wagner.® He finds, for
Y=0,

W= (w,/V2)[1+ (g 5/ @,) (0. 5578 — 3. 07x10-% )]

If we change to dimensionless variables using
q,0p/w,=Q,V=(1.2388x10%/A%)Q, ,

we obtain the values in Table I. The numerical co-
efficient of @, in '’ as obtained from the Boltzmann
dielectric functions depends somewhat on the value
of ¥, as is also the case for the SCF result. 2

The surface-plasmon dispersion relation also has
been calculated in the hydrodynamic approximation
and is shown for A=2 by the dashed line in Fig. 2.
Without retardation, ©’ has a linear dependence on
Q,, just as it does in the SCF approximation, but
the coefficient of the linear term is smaller (Table
I). When @, becomes large, the hydrodynamic value
of Q' falls gsignificantly below the SCF value. The
imaginary part of the frequency is not shown, as it
agrees with the local result for all @,.

The dominant nonlocal features of the surface-
plasmon dispersion relation can be understood
qualitatively by examining the ¢ dependence of
€,(g, w). Since we are interested in values of ¢, so
large that retardation is unimportant, Eq. (7b) can
be used.

Consider first the monotonic rise of w’ as ¢, in-
creases. Let =0, and neglect the imaginary part
of w; then €,(g, w) is real, provided that g lies out-
side the single-particle excitation region:

@mw'/B+ k) % —kp< q < @mw' /T +BE) 24 kg
(26)

TABLE I. Linear terms in the surface-plasmon
dispersion relation without retardation,
Dielectric Q’ Q”

A function

1 SCF 1A2 +5.05 X10-%Q, —37v-3.156%x107Q,
1 Boltzmann 1A2 +4.89 X1073Q, —1v-2.69%107%Q,
1 Hydrodynamic 1/2+4.80%107%Q, —-}v

2 SCF 1A2+1.81X1073Q, —3v—1,07x10-%Q,
2 Boltzmann 142 +1.22 X107%Q, —4v—0.67x107Q,
2 Hydrodynamic 1A2+1.20%107%Q, —3v
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It turns out that €;(q, w) decreases (becomes more
negative) as g increases, but increases as w in-
creases. This behavior of €;(g, w) is most readily
apparent in the hydrodynamic approximation (16),
but it is also true of the SCF dielectric function,
provided that one stays on the small-g large-w side
of the single-particle excitation region.

The integrand in Eq. (7b) contains the factor
(¢¥+ 4", a quantity that has “width” ¢,, “height”
¢;%, and area 1/q, when considered as a function of
q.. The range -g, < g, < ¢, emphasized by this fac-
tor corresponds to the g range ¢, < g g q,V2.
Therefore, if q,~0, only the g~0 or local value of
€,(g, w) contributes to the integral, and Eq. (7b)
immediately gives —1=1/¢,;(0, w) or w=w,;/V2, As
g, increases, so do the g values which make the
most important contribution, and €,(g, w) would de-
crease if w were held constant. Since the right-
hand side of Eq. (7b) must remain constant, the
equation can be satisfied only if w increases as g,
increases, for the tendency of €,(q, w) to decrease
as larger values of g become effective must be
counteracted by the tendency of €;(g, w) to increase
as w increases.

The behavior of the imaginary part of the surface-
plasmon frequency can be assessed from the imag-
inary part.of Eq. (7b):

o=f°° Eﬁﬁﬁrm<-€,(;, w)> . @)

When ¢ lies in the single-particle excitation region
(26), the energy-loss function Im[~1/¢,(g, w)] > 0.
Outside the region (26), however, the sign of
Im[-1/¢,(g, w)] is not fixed, but is the same as the
sign of w’’ (we still assume that y=0). The positive
contribution to the integral in Eq. (27) from the re-
gion (26) must be balanced by a negative contribution
outside this region; this is accomplished if w’’ as-
sumes a suitable negative value. The factor

(¢2+ ¢%)! again causes the dominant contribution to
the integralto occur for ginthe range ¢, < ¢  ¢,V2.

As g,~ 0, the contribution from the region (26) be-
comes vanishingly small, and therefore w’’- 0.
Conversely, as g, increases, the effective range
< 9% g.V/2moves closer to the single-particle ex-
citation region, the positive contribution from this
region increases, and - w’’ must also increase.

We might therefore expect —w’’ to increase
monotically as g, increases. —w’’ does in fact -
increase at first, but it begins to decrease as
the surface plasmon approaches the edge of the sin-
gle-particle excitation region [i. e, as g, approaches
(2mw'/B+ k2%~ kp]. The effective range of inte-
grationg, <gq £ g,v/2now is solargethat the change of
this range as g, varies is not the most important
factor, as it is for small g,. The decrease of —w"’
is caused by a coupling between the surface and vol-
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ume plasmons. We again denote the volume-
plasmon wave vector by g;(w), defined by

€,(gz, w)=0, and take w=w’, the real part of the
surface-plasmon frequency. It can then be shown?
that the volume-plasmon wave vector g, is smaller
than the surface-plasmon wave vector g,, but that
qL~ q, as g, approaches the edge of the single-par-
ticle excitation region. The function 1/¢,(g, w) has
a pole at g=gq;, and there are corresponding poles
in the complex g, plane at g, =+i(g2 —¢2)'/% These
poles approach the real ¢, axis as g, — gy =~ 0, which
leads to a growing peak in the energy-loss function
Im(-1/¢;) centered at'g,=0. This is a negative
peak since w’’<0 and since it occurs outside the
single-particle excitation region; it therefore makes
a negative contribution to the integral in Eq. (27).
If w’’ were constant, this negative contribution
would grow with increasing g, ; thus if the negative
contribution is to balance the positive contribution
from the single-particle region, —w’’ must de-
crease as ¢, increases.

From a slightly different point of view, we can
regard the decay rate of the surface plasmon as
being determined by the electronic excitations with
which it is coupled. These excitations have the
same complex frequency w as the surface plasmon
but different wave vectors g,, because of the mo-
mentum-destroying property of the surface. Single-
particle excitations always have a higher decay rate
than that of the surface plasmon, and therefore they
are a mechanism by which the surface plasmon can
lose energy. The volume plasmon, on the other
hand, has a lower decay rate and therefore can
transfer energy to the surface plasmon. The decay
rate of the surface plasmon is then determined by a
combination of the energy loss to single-particle
excitations and the energy gain from the volume
plasmon, and varies with the amount of coupling to
these two types of excitation. 2

The differences between the SCF and Boltzmann
results for the slope of the surface-plasmon disper-
sion relation as @,~ 0 (cf. Table I) can be under-
stood qualitatively on the basis of the above discus-
sion. The edge of the single-particle excitation re-
gion from the Boltzmann dielectric function is the
straight line g=muw’/fikg, in contrast with the para-
bolic edge g=(2mw’/%+ k%) %+ kp from the SCF di-
electric function. For a given frequency w’, the
onset of the single-particle excitation region occurs
at a larger value of g in the Boltzmann approxima-
tion than in the SCF approximation; also, the Boltz-
mann dielectric function departs more slowly from
its local (g=0) value as ¢ increases. For the low
values of @, of interest here, then, nonlocal effects
in the surface-plasmon dispersion relation are
smaller in the Boltzmann approximation than they
are in the SCF approximation for a given value of
Q. ; this fact is reflected by the smaller coefficients
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of Q. in Table I. I w,/vp<kpor A<1, the Boltz-
mann and SCF dielectric functions become identi-
cal, for at this limit the parabolic SCF single-par-
ticle excitation edge approaches a straight line.
This explains why the SCF and Boltzmann results in
Table I are more nearly equal for A=1 than for
A=2,

In the limit as yw,/w— 0 both the Boltzmann and
the hydrodynamic dielectric functions depend ouy
on w/w, and qup/w. It follows from Eq. (7b) that
when retardation is neglected, the dimensionless
surface-plasmon frequency w/ w, can be expressed
as a function of ¢,v/w, or, using dimensionless
variables,  is a function of @,V/Q. The initial
slope of the dispersion curve, (d/dQ,) IQx=0 is then
proportional to V or to A, In Table I, the @,
terms are, therefore, four times larger for A=1
thanfor A = 2 inboth the Boltzmann and hydrodynam-
ic cases. Since the SCF dielectric function for
y=0 depends on the three quantities w/w,, qvg/w,
and g/kr, the initial slope of the dispersion curve
is not simply proportional to V. In the SCF case,
then, the @, terms are not four times larger for
A=1 than for A=2.

A comment should be made about the sudden dis~
appearance of the surface plasmon when g, exceeds
a critical value. For a given frequency, ¢, remains
trapped between the wave vectors of the volume
plasmon and the edge of the single-particle excita-
tions at the same frequency; that is,

qr <G <@Cmw '/ +REYVE=kp .

At the frequency and wave vector where the volume
plasmon enters the single-particle excitation re-
gion [i.e., where g; = (2mw’/i +k2)2 ~kg], the
surface plasmon ends, since the region in which it
exists disappears at this point. If ¢, is increased
further, the iterative procedure used to find the
frequency no longer converges. There is some in-
conclusive evidence, based on the way in which the
iteration appears to diverge, that w’ and —w’’ may
increase rapidly to large values. However, if a
solution of Eq. (7a) or (7b) exists for larger ¢,, we
have not been able to find it.

APPENDIX A

The location of the logarithmic singularities in
the SCF dielectric functions (20) and (22), which oc-
cur when z+u'+1=0, must be considered if Im(e)
is to remain positive in the single-particle excita-
tion region. There are four singularities associ-
ated with z —u’ £1=0 or g== (k% + 20kp/vp) 2t kp.
If w is real and 1/7> 0, placing ®=w+i/7 in the
first quadrant, two of these singularities lie in the
first quadrant of the complex g plane and may be
connected by a branch line, and the other two sin-
gularities, similarly joined by a branch line, lie in
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the third quadrant. The two singularities in the
first quadrant, which approach the real ¢ axis when
7=, define the boundaries of the single-particle
excitation region. For in the limit as 7= «, .if we
let ¢ run along the positive real axis, Im(e)>0 when
q lies between these two singularities, and is zero
otherwise.

The integral in Eq. (7a) or (7b) involves the com-
plex surface-plasmon frequency w, and @ lies in the
fourth quadrant rather than first quadrant, since
w’’+i/7<0. The two singularities in the ¢ plane,
which were in the first quadrant for real w, are
now in the fourth quadrant. If the integration over
q, were taken along the real ¢, axis, ¢ would also
move along the real ¢ axis, and, consequently, the
path of integration would lie above, rather than be-
low the singularities. Im(e) would then be negative
in the single-particle excitation region, which is the
wrong sign physically. Accordingly, one must car-
ry out the integration over g, by deforming the path
of integration far enough into the fourth quadrant to
pass below the singularities.’

There are four more logarithmic singularities at
z+u'£1=0o0r g= (k2 —20kz/ve)/ 2+ kp. The sur-
face-plasmon frequency w’ is high enough that kf,
—2®kp/vp is approximately a negative real quantity,
making (k2 - 20kg/ vF)l/ 2a relatively large, almost
purely imaginary quantity. These singularities lie
far from the real g axis and the path of integration;
their position is insensitive to the sign of w’’, and
we need not be concerned about them.

APPENDIX B

The coupling between volume and surface plas-
mons has an important influence on the surface-
plasmon lifetime. The nature of this coupling can
be assessed most easily by use of the hydrodynamic
dielectric function (16). With this approach we can
determine the electric field in the metal and show
that the surface plasmon takes on the characteris-
tics of a volume plasmon as the wave vector g, in-
creases. The surface-plasmon lifetime itself can-
not be treated accurately in the hydrodynamic ap-
proximation because the single-particle excitations
are missing entirely, making the lifetime infinite in
the absence of electron scattering (7= ).

Starting with general expressions for the z-depen-
dent parts of the fields within the metal, '

2iw H, = T
2iw H. o T
O AR Rk
where
w? w?
Tee= (—0755€t"1) qi"'czqz 51q5$ (B3)
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w? when v=0. The electric field in the metal is
Tax= (Zz}'f (€7 —€p)+ 1> 99z (B4) clearly the sum of two exponentially decaying func-
tions, the first having the form e %*, the same as
and in the local approximation, the second having the
¢ew? w? form expl- (g2 - ¢2)"/2z]. The second constituent
D TR S (Ez}f & - 1> : (BS) of the field is an evanescent volume plasmon, since

We can neglect retardation by taking ¢ - <, noting
that (¢/w)H,(0+) remains finite, and obtain

2ic I
Ex(z)=—i—Hy(0+)§‘; fw quf;m daq,, (B6)

24 1 = i
E2)= = H,(04) 5~ f Bdef — gq,. (BY)

o 0¢(g, w)

In the local approximation we replace €,(g, w) by

€(w)=1im ¢,(q, w)
q 0

and find an electric field that decays exponentially
into the metal:

E,(2)~ (ic/ w)H,(0+)(q,/€)e%* , (B8)

E,(2)=~iE(2). (B9)

This field satisfies V+ E=VxE=0; therefore, the
induced charge does not extend into the metal, but
resides entirely on the surface.

In the hydrodynamic approximation we use the
dielectric function (15) in Eqgs. (B6) and (B7) and
find

2.1/2
E.(2)=(ic/w)H(0+)q, (A e %" —Aze'("g‘“’ 2y,
(B10)
1/2
E (2) = = (c/w)H,0+)g,(A1e7%* —Agen G 5,
‘ (B11)
where
A=1+w3/8%%, (B12)
Ay= ﬂwg e (B13)
2 Bq; (g5 -4qz) ’
and
w§
Ag= Bl (B14)

qr, the volume-plasmon wave vector at the fre-
quency w, is given by

qr=B" (w2 = wl)V2 (B15)

the charge density in the metal,

p(z) = 4% <3E(Z) +iqux(z)>

9z

H,(0+) w} q (i) %
g Ay - e a@ (B16)
dro B (g; = qp) ’

is associated entirely with this constituent.
The ratio of the two decay rates follows immedi-
ately from Eq. (17):

(gi-q8)"? _1+e(w)
qx 1-e(w)’

(B17)

where w is the frequency of a surface plasmon with
wave vector ¢q,. When ¢,~ 0, w= w,/V2 or €(w)

-~ 1, and from (B17), (g2 -¢%)"/%/q,~ =. This is
the local limit, in which the second constituent of
the field, together with the charge density, is es-
sentially concentrated at the surface. As g, in-
creases, this ratio of decay rates decreases from
infinity, and we finally arrive at the opposite limit:
As g~ ®, w= o, or e(w)—1, and therefore
(¢2-43)"/%/q,~ 0. The decay rates are reversed,
the charge density extending into the metal much
farther than the first constituent of the field. It can
also be seen from Eqgs. (B12)~(B14) that in this
limit of large g, and large w, the amplitude ratios
are Ay/A;~2, A,/A;~ . The surface plasmon
therefore takes on the character of a volume plas-
mon propagating essentially parallel to the surface
in the x direction with an electric field in the di-
rection of propagation.

Using hydrodynamic dielectric functions we have
seen that as g, increases, ¢, and g, approach each
other, and the evanescent volume-plasmon fields be-
come increasingly important. A qualitatively simi-
lar situation occurs when SCF dielectric functions
are used. The main difference between the two ap-
proximations is that in the hydrodynamic approxi-
mation, the surface plasmon exists to an arbitrarily
large value of ¢,, whereas in the SCF approxima-
tion, it appears to exist only up to a critical value
of ¢,, which is also the point where ¢, and ¢, be-
come equal,

*Work was performed in the Ames Laboratory of the
U. S. Atomic Energy Commission under Contribution
No. 2874.
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Ay @ , the numerical coefficients of @, depend slightly
on 7v; the values appearing in Table I are for Y=0. For
the SCF results with A=1, this coefficient has the value
3.15x1074 if =0 and increases to 3.30 X104 if y=10"2,
When A=2, the coefficient increases from 1.07x10"4 to
1.11x10"* as ¥ changes from 0 to 102, The corresponding
numerical coefficients in Q' are essentially independent
of 7.

%The relationship between g, and g, is discussed in Ap-
pendix B. The discussion here is simplified by taking
Y=0, which makes g7 real. If ¥#0, one must contend
with a complex gz , and the discussion would have to be
modified slightly.

BWe are again taking ¥=0. If Y=0, an additional energy-
loss mechanism is introduced and the decay rate of the
surface plasmon increases.



